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FORCED MOTION OF A STEPPED SEMI-INFINITE
PLATE
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Forced motion of a plate of infinite length whose thickness, density and elastic properties
vary in steps along the finite breadth, is analysed by an eigenfunction method. The
numerical results for transverse deflection computed for a clamped-clamped plate subjected
to constant or half-sine pulse load are plotted in graphs.
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1. INTRODUCTION

A large number of papers are available in the literature on the vibration of beams of
constant and uniformly varying thickness. A few papers available on free vibration of
beams of stepped thickness are given in the reference section [1–13]. The authors have not
so far come across any paper on forced motion of beams of stepped thickness.

In the present paper, the forced motion of an isotropic plate of infinite length and finite
breadth whose thickness, density and elastic property along the breadth vary in steps, is
considered. The analysis is based on classical theory. The plate is assumed to be made up
of n plate elements of infinite lengths and finite breadths, joined edge to edge and having,
in general, different breadths, thicknesses, densities, Young’s modulii and Poisson ratios.
The arbitrary constants arising in the solution of equations of motion for free vibration
are determined by the edge and continuity conditions. The forced motion is analysed by
the eigenfunction method.

The forced motion of a plate clamped at both edges and subjected to constant or
half-sine pulse load uniformly distributed over a portion of the plate is analysed as an
example problem. The numerical results for transverse deflection computed for a plate
made up of three plate elements by varying the breadths, thicknesses, densities and
Young’s modulii of the elements for the loads distributed uniformly over the whole plate
are plotted in graphs. The variations in breadths, thicknesses and densities are taken in
such a way that the total breadth, average thickness and average density of the plate remain
constant.

2. EQUATION OF MOTION

An isotropic plate of infinite length and finite breadth a whose thickness, density and
elastic property along the breadth vary in steps is considered. The plate is referred to
Cartesian co-ordinates by taking the y-axis along the infinite length, the middle plane of
the plate in the plane z=0 and the two edges in the planes x=0 and x= a. The plate
is assumed to be made up of n plate elemets joined edge to edge with their middle planes
lying in plane z=0. The breadth, thickness, density, Young’s modulus and Poisson ratio
of the kth element (k=1, 2, . . . , n) are taken as ak , hk , rk , Ek and nk respectively and it
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lies from x= xk−1 to x= xk where xk − xk−1 = ak , x0 =0 and xn = a. Some of the
thickness profiles of the plate along the breadth are shown in Figure 1.

The equations of motion of the plate elements according to classical theory are taken
as

Ekh3
k

12(1− n2
k )

wk,XXXX + rkhkwk,tt = pk (x, t); xk−1 E xE xk , k=1, 2, . . . , n, (1)

where wk and pk are the transverse deflections and the loads per unit area respectively, and
t is the time. A comma followed by a variable suffix denotes differentiation with respect
to that variable.

Making the equations (1) non-dimensional, one gets

IkWk,XXXX + gkHkWk,TT =Pk (X, T); Xk−1 EXEXk , k=1, 2, . . . , n, (2)

where

X= x/a, Xk = xk /a, Hk = hk /a, gk = rk /ra , ok =Ek /E, Pk = pk /E,

T= tz(E/raa2), Ik = okH3
k /12(1− n2

k ), X0 =0, Xn =1.

ra is the average density of the plate and E is the Young’s modulus of some standard
material.

3. FREE VIBRATION ANALYSIS

3.1. 

For free vibration, one takes

Wk (X, T)=Wkj (X) eiVjT (3)

and substitutes in equation (2), after putting Pk =0, to get

Wkj,XXXX −v4
kjWkj =0; v4

kj = gkHkV
2
j /Ik , (4)

where Vj and Wkj are the circular frequency and mode shape function respectively in the
jth normal mode of free vibration.

Figure 1. Thickness profiles of the plate.
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For the sake of convenience the suffix j is suppressd in free vibration analysis and the
solutions of equations (4) are taken as

Wk (X)=Sk (X)Dk , Dk =[d1k d2k d3k d4k ]',

Sk (X)= [cosh vkX sinh vkX cos vkX sin vkX], (5)

where Dk are vectors of mode shape constants and prime denotes the transpose of a matrix.
The continuity conditions between the plate elements at X=Xk ; k=1, 2, . . . , n−1 can

be taken as

Wl (Xk )=Wk (Xk ), Wl,X (Xk )=Wk,X (Xk ),

IlWl,XX (Xk )= IkWk,XX (Xk ), IlWl,XXX (Xk )= IkWk,XXX (Xk ), (6)

where l= k+1.
From (5) and (6) one gets

Dl =B(l)Dk , B(l) =A−1
l (Xk )Ak (Xk ) (7)

where the matrices Ak (Xk ) and Al (Xk ) are given by

Ak (Xk )= [Sk (Xk ) Sk,X (Xk ) IkSk,XX (Xk ) IkSk,XXX (XK)]',

Al (Xk )= [Sl (Xk ) Sl,X (Xk ) IlSl,XX (Xk ) IlSl,XXX (Xk )]'. (8)

From equation (7) one gets

Dl =C(l)D1, C(l) =B(l)B(l−1) . . . B(2) = [c(l)
qr ]4×4. (9)

In this way the 4n constants arising in solutions (5) are reduced to 4. It should be noted
that if the thicknesses, densities and elastic properties of the n plate elements are taken
to be the same, the matrices B(l) and C(l) reduces to unit matrices and the whole problem
reduces to that of a uniform plate.

3.2.  

The plate is taken to be clamped at both edges, for which the conditions are

W1(0)=W1,X (0)=Wn (1)=Wn,X (1)=0. (10)

3.3.  

Using relations (9) in solutions (5) and then putting them in conditions (11), one gets

d11 + d31 =0, d21 + d41 =0, s11d11 + s12d21 + s13d31 + s14d41 =0,

s21d11 + s22d21 + s23d31 + s24d41 =0, (11)

where

s1r =S3(1)[c(n)
qr ]4×1, s2r =S3,X (1)[c(n)

qr ]4×1, r=1, 2, 3, 4. (12)

For a non-trivial solution of equations (11) the determinant of the coefficient matrix must
vanish, which gives rise to the following transcendental frequency equation

(s13 − s11)(s24 − s22)− (s23 − s21)(s14 − s12)=0. (13)

The denumerable infinity of roots of this equation for given dimensions, densities and
elastic constants of the plate elements are frequencies Vj of various normal modes of free
vibration of the plate.
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3.4.  

The orthogonality condition for normal modes of free vibration of the plate be obtained.
It is

s gkHk g
Xk

Xk−1

WkiWkj dX=0, when i$ j, (14)

where summation over k is taken from 1 to n.
A mode normalization condition to obtain unique mode shapes is taken as

s gkHk g
Xk

Xk−1

W2
kj dX=1. (15)

3.5.  

Since out of the four equations (11) only three are independent, three of them are solved
first to get D1 in terms of d41. This is substituted in equations (9) to get D2 and D3 in terms
of d41. These are then substituted in solutions (5) to get the mode shapes as

Wk (X)=Sk (X)[e1k e2k e3k e4k ]'d41; Xk−1 EXEXk , k=1, 2, . . . , n, (16)

where

d=(s12 − s14)/(s13 − s11), e11 =−d, e21 =−1, e31 = d, e41 =1,

eql = d(c(l)
q3 − c(l)

q1)+ (c(l)
q4 − c(l)

q2), q=1, 2, 3, 4. (17)

To get d41, the suffix j of equation (15) is suppressed and Wk (X) from equation (16) is
substituted in it. It gives

d2
41 =1/ s [Fk (Xk )−Fk (Xk−1)], (18)

where

Fk (X)= (gkHk /4vk )[ f1kvkX+ f2k sinh (2vkX)+ f3k sin (2vkX)

+ f4k cosh (2vkX)+ f5k cos (2vkX)+ cosh (vkX){ f6k sin (vkX)

+ f7k cos (vkX)}+sinh (vkX){ f8k sin (vkX)+ f9k cos (vkX)}], (19)

f1k =2(e2
1k − e2

2k + e2
3k + e2

4k ), f2k = e2
1k + e2

2k , f3k = e2
3k − e2

4k , f4k =2e1ke2k ,

f5k =−2e3ke4k , f6k =4(e1ke3k + e2ke4k ), f7k =4(e2ke3k − e1ke4k )

f8k =4(e1ke4k + e2ke3k ), f9k =4(e1ke3k − e2ke4k ). (20)

4. FORCED MOTION ANALYSIS

A solution of the forced motion equations (2) subjected to the continuity conditions (6)
and edge conditions (10) is assumed to be

Wk (X, T)= s Wkj (X)gj (T); Xk−1 EXEXk , k=1, 2, . . . , n. (21)
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where the summation over j is from 1 to a. Substituting it in equations (2) and using
equations (4), one gets

s gkHkWkj (gj,TT +V2
j gj )=Pk (X, T). (22)

Multiplying it by Wki and using conditions (14) and (15), one gets

gj,TT +V2
j gj =Gj (T), (23)

where

Gj (T)= s g
Xk

Xk−1

PkWkj dX. (24)

The solution of equation (23) is

Vjgj (T)=Vjgj (0) cos (VjT)+ gj,T (0) sin (VjT)+g
T

0

Gj (t) sin {Vj (T− t)} dt, (25)

where

gj (0)= s gkHk g
Xk

Xk−1

Wk (X, 0)Wkj dX,

gj,T (0)= s gkHk g
Xk

Xk−1

Wk,T (X, 0)Wkj dX. (26)

If the initial conditions are taken as Wk (X, 0)=Wk,T (X, 0)=0, then

gj (0)= gj,T (0)=0. (27)

4.1.  

The following two types of external loads uniformly distributed over a portion of each
plate element are taken:

4.1.1. Constant load (CL)

Pk (X, T)=P0[U(X− jk )−U(X− hk )]U(T)/ s (hk − jk )

Xk−1 E jk Q hk EXk , k=1, 2, . . . , n, (28)

where P0 is the total load on the plate and U denotes unit step function.
Gj (T), evaluated after substituting from equations (16) and (28) in equation (24), is

substituted in equation (25) and the condition (27) is used to get

gj (T)=Pj [1− cos (VjT)]/V2
j , (29)
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where

Pj =P0 s [fkj (hk )−fkj (jk )]/ s (hk − jk )

fkj (X)= d41j [e1kj sinh (vkjX)+ e2kj cosh (vkjX)+ e3kj sin (vkjX)− e4kj cos (vkjX)]/vkj . (30)

4.1.2. Half sine pulse load (HL)

Pk (X, T)=P0[U(X− jk )−U(X− hk )]{1−U(T− t1)} sin (pT/t1)/ s (hk − jk ),

Xk−1 E jk Q hk EXk , k=1, 2, . . . , n. (31)

where t1 is the duration of HL.
Proceeding as above one gets

gj (T)=6Pjt1[p sin (VjT)−Vjt1 sin (pT/t1)]/[Vj (p2 −V2
j t2

1 )],
2Pjpt1[sin {Vj (T− t1/2)} cos (Vjt1/2)]/[Vj (p2 −V2

j t2
1 )],

when TQ t1

when Te t1.
(32)

The substitution of unique mode shapes Wkj given by equations (18) and (16) and gj (T)
from equation (29) or (32) as the case may be gives the transverse deflection Wk (X, T) for
forced motion.

5. RESULTS AND DISCUSSION

The variations in breadths, thicknesses and densities of different plate elements are
defined in such a way that the total breadth, average thickness and average density of the
plate remain constant by taking ak = ak /a1, bk = hk /h1 and dk = rk /r1.
Now

Sak = a or a1Sak = a or X1 =1/Sak and Xk =X1 s
k

i=1

ai ;

Sakhk = aha or a1h1Sakbk = aha or H1 =Ha /(X1Sakbk ), and Hk =H1bk ,

where

ha is the average thickness of the plate and Ha = ha /a.

Sakhkrk = ahara or g1 =Ha /(X1H1SakHkdk ) and gk = g1dk .

Numerical results are computed for transverse deflection parameter W0 = (Wk ×10−2/
P0)X=0·5 for a plate made up of three plate elements whose first and third elements are
identical i.e., for a3 = b3 = d3 = o3 =1, by taking n1 = n2 = n3 =1·3, Ha =0·05 and
t1 =2p/V1.

The frequencies Vj are computed by the bisection method up to an accuracy of five
decimal places and the series of Wk (equation (21)) is summed up to the first ten terms
which give an accuracy of at least four decimal places.

The graphs of W0 versus T for CL are plotted in Figure 2 for various values of b2 and
a2 and in Figure 3 for various values of d2 and o2. Figure 2(a) shows, when the breadth
of the middle element is kept larger than the other two and its thickness is increased, the
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Figure 2. W0 versus T for CL for various values of b2 and a2 (b2 = a2): –w–, 0·4; –*–, 0·7; –+–, 1·0; –W–,
1·3; –Q–, 1·6. (a) a2 =1·4; d2 =1·0; o2 =1·0: (b) a2 =0·6; d2 =1·0; o2 =1·0: (c) b2 =1·4; d2 =1·0; o2 =1·0:
(d) b2 =0·5; d2 =1·0; o2 =1·0.

Figure 3. W0 versus T for CL for various values of d2 and o2 (d2 = o2): –w–, 0·4; –*–, 0·7; –+–, 1·0; –W–,
1·3; –Q– 1·6. (a) b2 =1·4; a2 =1·0: o2 =1·0; (b) b2 =0·6; a2 =1·0; o2 =1·0: (c) b2 =1·4; a2 =1·0; d2 =1·0:
(d) b2 =0·6; a2 =1·0; d2 =1·0.
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Figure 4. W0 versus T for HL for various values of b2 ans a2. Keys for (a), (b), (c) and (d) as in Figure 2.

Figure 5. W0 versus T for HL for various values of d2 and o2. Keys for (a), (b), (c) and (d) as in Figure 3.
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time of attaining the first peak as well as the magnitude of W0 at this first peak increases.
Figure 2(b) shows, when the breadth of the middle element is kept smaller than the other
two and its thickness is increased from a smaller value, the magnitude of W0 at the first
peak decreases and then increases for the maximum value of b2. Figures 2(c) and 2(d) show,
when the breadth of the middle element is increased, the magnitude of W0 at the first peak
increases if its thickness is kept larger than the other two but it decreases if the thickness
is kept smaller. It is also seen that the magnitude of W0 is hardly sensitive to the change
in the breadth of the middle element when its thickness is kept larger than the other two.
Figures 3(a) and 3(b) show that the magnitude of W0 at the first peak remains unchanged
with the increase in the density of the middle element but the time of attaining the first
peak increases. Figures 3(c) and 3(d) show that the magnitude of W0 at the first peak as
well as the time of attaining the first peak decrease with the increase in the Young’s
modulus of the middle element.

The graphs of W0 versus T for HL are plotted in Figures 4 and 5. The variations in W0

are similar to its corresponding cases of CL except that here the time of attaining the first
peak is longer but the value of W0 at it is smaller. Here the peaks are seen alternatively
on both sides of the z-axis.
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